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In this paper, we propose a novel Vlasov solver based on a semi-Lagrangian method which
combines Strang splitting in time with high order WENO (weighted essentially non-oscil-
latory) reconstruction in space. A key insight in this work is that the spatial interpolation
matrices, used in the reconstruction process of a semi-Lagrangian approach to linear
hyperbolic equations, can be factored into right and left flux matrices. It is the factoring
of the interpolation matrices which makes it possible to apply the WENO methodology
in the reconstruction used in the semi-Lagrangian update. The spatial WENO reconstruc-
tion developed for this method is conservative and updates point values of the solution.
While the third, fifth, seventh and ninth order reconstructions are presented in this paper,
the scheme can be extended to arbitrarily high order. WENO reconstruction is able to
achieve high order accuracy in smooth parts of the solution while being able to capture
sharp interfaces without introducing oscillations. Moreover, the CFL time step restriction
of a regular finite difference or finite volume WENO scheme is removed in a semi-Lagrang-
ian framework, allowing for a cheaper and more flexible numerical realization. The quality
of the proposed method is demonstrated by applying the approach to basic test problems,
such as linear advection and rigid body rotation, and to classical plasma problems, such as
Landau damping and the two-stream instability. Even though the method is only second
order accurate in time, our numerical results suggest the use of high order reconstruction
is advantageous when considering the Vlasov–Poisson system.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

For collisionless plasmas where the average particle speed is much less than the speed of light, the plasma may be de-
scribed by the well-known Vlasov–Poisson (VP) system,
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þ v � rxf þ Eðt;xÞ � rvf ¼ 0; ð1:1Þ
and
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where x and v are coordinates in phase space ðx;vÞ 2 R3 � R3, E is the electric field, / is the self-consistent electrostatic po-
tential and f ðt;x;vÞ is the probability distribution function which describes the probability of finding a particle with velocity
v at position x at time t. The probability distribution function couples to the long range fields via the charge density,
qðt;xÞ ¼

R
R3 f ðt; x;vÞdv � 1, where we take the limit of uniformly distributed infinitely massive ions in the background.

Eqs. (1.1) and (1.2) have been nondimensionalized so that all physical constants are one. When self-consistent magnetic
fields need to be considered, the system must be extended to the Vlasov–Maxwell (VM) system. However, in this paper
we focus our attention on numerically solving the Vlasov equation.

The Lagrangian particle methods, e.g. the classical Particle-In-Cell (PIC) method [4,20,29,28,21], Particle–Particle–Parti-
cle–Mesh (P3M) method [20,1], Complex Particle Kinetics (CPK) method [14,18,19], etc., are based on tracing the motion
of a finite number of macro-particles (test particles). The trajectories of particles are traced by solving Newton’s equations
of motions with self-consistent fields. The key task in developing an efficient Lagrangian method is reducing the field eval-
uation from OðN2Þ to a more manageable operation count, where N is the number of test particles in the simulation. In PIC
and P3M a fixed volumetric mesh is used to compute the fields, and in CPK an inherent assumption of neutrality is built into
the particle model. An alternative grid-free approach for efficiently solving for the self-consistent fields is to make use of fast
summation algorithms [3,17,23], as in the Boundary Integral/Treecode (BIT) method [11,10,12,24], which solves for the fields
inOðN log NÞ. The Lagrangian particle methods are very popular in plasma simulations because: (1) they are flexible and easy
to implement, (2) it is easy to couple Lagrangian methods with Monte Carlo techniques to approximate the collisional term
in the Boltzmann equation, (3) the computational cost is reasonable, especially for high dimensional problems. However, tra-
ditional Lagrangian particle methods, such as PIC, P3M and CPK, typically use a statistical approach in their representation of
phase space, and as such, the numerical noise in these systems is proportional to Oð1=

ffiffiffiffi
N
p
Þ. Within the BIT methodology

there have been attempts to overcome this by using a systematic collocation over the initial phase space, combined with
dynamic point insertion in time, so as to maintain phase space accuracy [12].

On the other hand, Eulerian approaches are based on a fixed numerical mesh. Compared to a Lagrangian approach, a
drawback of the grid-based method is its significant increase in computational cost as the problem dimension increases.
However, these methods have the advantage of high order accuracy, which leads to a reduction in computational cost when
compared with a low order method. The gain in efficiency is because the high order method, on a coarse mesh, can often
attain similar or better results than the low order method on a fine mesh. One of the most accurate mesh-based numerical
methods applied to the VP system is the non-split high order conservative finite difference WENO method, presented in Refs.
[22,2]. The method, which has successfully simulated the Landau damping phenomenon with machine precision [33], is high
order in phase space and time, and could resolve sharp interfaces without oscillations by adaptively assigning weights to
neighboring reconstruction stencils. Other well-developed methods for the VP system include finite element [32,31] as well
as spectral methods. The bottleneck of all of these methods, when applied to the VP system, is the CFL time step restriction.

The Strang splitting semi-Lagrangian methods are one of the most popular algorithms among Eulerian approaches for the
VP system. Various implementations have been successfully developed in the Strang splitting semi-Lagrangian framework
[8,27,16,30,7,6,25,9]. Despite its success and popularity, a number of deficiencies occur in previous implementations. The
semi-Lagrangian method, which evolves point values in Ref. [8], is not written in a conservative form. Because of this, an
ad hoc filtering procedure is necessary to remove oscillations around shocks. This filtering procedure has the additional
drawback of introducing artificial numerical diffusion. The semi-Lagrangian method, that evolves integrated mass, described
in Refs. [27,16,30], is at best second order accurate in space, because the shearing velocity varies with order one within each
individual mesh cell. In [7], pointwise WENO (PWENO) interpolations are applied to obtain a semi-Lagrangian and flux bal-
ance methods for the dimensional split Vlasov equation. The algorithms developed there appear to be very close to the semi-
Lagrangian WENO method proposed in this paper. However, there is an essential difference. Specifically, the PWENO inter-
polation [7] that evolves point values is not written in a conservative form, and hence it can be shown that the PWENO meth-
od is not conservative. The WENO interpolation for the conservative flux balance methods [7] evolves the integrated mass,
rather than the point values. As a result, the method is at best second order accurate for multi-dimensional problems. The
work in Refs. [25,9] is also only second order accurate in space, because of the interpolation schemes used in the evolution of
phase space density.

In this paper, we propose a novel Vlasov solver based on Strang splitting in time and a conservative high order semi-
Lagrangian method with WENO reconstruction [22,2] in space. Strang splitting is used to dimensionally split the high dimen-
sional nonlinear Vlasov equation into a sequence of one-dimensional linear hyperbolic problems. The key insight, made in
this paper, is that the spatial interpolation matrices, used in the reconstruction process of a semi-Lagrangian approach, can
be factored into symmetric right and left flux matrices. As demonstrated in Section 3 of the paper, it is the factoring of the
interpolation matrices which makes it possible to apply the WENO methodology in the reconstruction used in the semi-
Lagrangian update. For each decoupled one-dimensional hyperbolic equation, the proposed WENO reconstruction is a point-
wise conservative semi-Lagrangian algorithm. The fact that it is the point value, instead of integrated mass, that is being
evolved, allows a direct extension of the proposed scheme to higher than second order accuracy in space for multi-dimen-
sional problems.

The paper is organized as follows. Section 2 is a brief review of the Strang splitting semi-Lagrangian framework. A con-
servative form of the semi-Lagrangian method, that evolves point values, is rewritten in Section 3 with coefficients presented
for the third, fifth, seventh and ninth order schemes. Section 3 also contains the high order WENO reconstruction procedure,
which prevents oscillations around discontinuities in phase space. In Section 4, we present our numerical results for basic
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test problems, such as linear advection and rigid body rotation, as well as the results from application of the method to clas-
sical plasma problems, such as Landau damping and the two-stream instability. In particular, the application to the two-
stream instability makes it clear how high order can provide the desired accuracy for a bulk flow on a very coarse mesh. Sec-
tion 5 provides a summary of the results and conclusions.

2. Strang splitting semi-Lagrangian method for the Vlasov equation

In this section, we briefly review the Strang splitting semi-Lagrangian method for the VP system, originally proposed in
Ref. [8]. The Strang splitting method is also known as the ‘fractional step method’ in the literature. In this paper, we consider
the Vlasov equation, Eq. (1.1), with only one position and one velocity axis, i.e. ðx;vÞ 2 R� R. However, extension to higher
dimensions in x and v is straightforward. The time splitting form of Eq. (1.1) is,
@f
@t
þ v @f

@x
¼ 0; ð2:1Þ

@f
@t
þ Eðt; xÞ @f

@v ¼ 0: ð2:2Þ
The split form of Eq. (1.1) can be made second order accurate in time by solving Eq. (2.1) for a half time step, then solving Eq.
(2.2) for a full time step, followed by solving Eq. (2.1) for a second half time step. The observation that both Eqs. (2.1) and
(2.2) are linear hyperbolic equations allows for a simple implementation of the semi-Lagrangian method based on shifting in
each direction. Specifically, the numerical update from f nðx;vÞ (the solution at tn ¼ nDt) to f nþ1ðx;vÞ is as follows:

1. advance a half time step for Eq. (2.1) by shifting in the x-direction,
f �ðx;vÞ ¼ f n x� Dt
2

v ;v
� �

; ð2:3Þ
2. compute the electric field at the half step by substituting f � into Eq. (1.2) and solve for E�ðxÞ,
3. advance a full time step for Eq. (2.2) by shifting in the v-direction,
f ��ðx; vÞ ¼ f �ðx;v � DtE�ðxÞÞ; ð2:4Þ
4. advance a half time step for Eq. (2.1) by shifting in the x-direction,
f nþ1ðx;vÞ ¼ f �� x� Dt
2

v;v
� �

: ð2:5Þ
In general, the function f nðx;vÞ (or f �ðx;vÞ; f ��ðx;vÞ) is only available at grid points. Hence, an interpolation algorithm is
needed in order to recover the function values at the foot of the characteristics in the shifting process. Indeed, the interpo-
lation algorithms, discussed in detail in the next section, are the key to the quality of the semi-Lagrangian scheme.
Remark 2.1. The fact that the semi-Lagrangian method is not subject to a CFL time step restriction, which is what allows for
an extra large numerical time step, is its main advantage over the traditional finite difference method [33]. On the other
hand, its convergence rate is at best second order in time.
3. Conservative representation of semi-Lagrangian scheme and WENO reconstruction

In this section, we focus our discussion on solving a one-dimensional linear hyperbolic equation of the form
ft þ vfx ¼ 0; f ðx; t ¼ 0Þ ¼ f0ðxÞ; on ½a; b�; ð3:1Þ
by a semi-Lagrangian method under the assumption that v is a constant. The method can be used to solve Eqs. (2.1) and (2.2).
Hence, this method is well suited for solving the Vlasov equation, when it is cast in the Strang splitting framework.

In this section, we adopt the following notation for the numerical discretization. The domain ½a; b� is discretized as
a ¼ x0 < x1 � � � < xN ¼ b: ð3:2Þ
We assume uniformly distributed grid points, i.e. xi ¼ aþ i � Dx with mesh size Dx ¼ ðb� aÞ=N. We chose xiþ1
2

to be the mid-

point, xiþ1
2
¼ ðxi þ xiþ1Þ=2, and define cells about xi and the midpoint xiþ1

2
as Ii ¼ xi�1

2
; xiþ1

2

h i
and Iiþ1

2
¼ ½xi; xiþ1�. We further define

xshift to be xshift ¼ v Dt
Dx, and let f n

i denote the point values of the numerical solution at the mesh point x ¼ xi and time
t ¼ tn :¼ nDt.

In Section 3.1, the conservative semi-Lagrangian method with a fixed stencil reconstruction is discussed, while the meth-
od with WENO reconstruction, which assures non-oscillatory capture of sharp interfaces, is discussed in Section 3.2. The
WENO reconstruction presented in Section 3.2 is developed for the flux-based conservative form of Section 3.1, hence it
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is important to have a good understanding of the conservative formulation before diving into the WENO method presented
in Section 3.2.

3.1. Conservative representation and fixed stencil interpolation

3.1.1. A third order interpolation
In this section, a conservative semi-Lagrangian scheme based on third order fixed stencil interpolation is presented. There

are three cases of xshift which are discussed in turn: shift to the right by some amount less than half a cell xshift 2 0; 1
2

� �� �
,

shift to the left by some amount less than half a cell xshift 2 � 1
2 ;0

� �� �
and shift a distance greater than half a cell jxshiftj > 1

2

� �
.

The procedures presented here are the same whether they are in compact non-conservative form, i.e. not expressed as a dif-
ference of fluxes, or in conservative form, i.e. expressed as a difference of fluxes. The conservative form allows for the appli-
cation of WENO reconstruction to the semi-Lagrangian method and is presented in Section 3.2.

Hereafter, we will adopt a matrix notation for presentation of the interpolation scheme. The matrix A will denote the
interpolation matrix. We use Aði; jÞ to denote the element at the ith row and jth column, Aði; :Þ to denote the ith row of A,
and Að:; jÞ to denote the jth column of A. Matrices B and C in steps three and four are related to the conservative form of
the procedure, with matrix C being essential in the construction of the conservative form.

We first consider xshift 2 0; 1
2

� �
. The algorithm is as below.

1. To compute the solution at tnþ1, we start with a reconstruction of the underlying function at tn using a piecewise
cubic approximation ~f nðxÞ. Its projection on cell Ii�1

2
is ~f n

i�1
2
ðnÞ, which is reconstructed from the stencil f n

i�2; f
n
i�1; f

n
i ; f

n
iþ1

	 

and is
~f n
i�1

2
ðnÞ ¼ f n

i þ �1
6

f n
i�2 þ f n

i�1 �
1
2

f n
i �

1
3

f n
iþ1

� �
nþ 1

2
f n
i�1 � f n

i þ
1
2

f n
iþ1

� �
n2 þ 1

6
f n
i�2 �

1
2

f n
i�1 þ

1
2

f n
i �

1
6

f n
iþ1

� �
n3; ð3:3Þ
where nðxÞ ¼ x�xi
xi�1�xi

2 ½0;1�; x 2 Ii�1
2
. Eq. (3.3) can be written in matrix form as,
~f n
i�1

2
ðnÞ ¼ f n

i�2; f
n
i�1; f

n
i ; f

n
iþ1

� �
� AL

3 � ð1; n; n
2; n3Þ0; ð3:4Þ
with matrix
AL
3 ¼

0 � 1
6 0 1

6

0 1 1
2 � 1

2

1 � 1
2 �1 1

2

0 � 1
3

1
2 � 1

6

0BBB@
1CCCA: ð3:5Þ
2. An update for the function at the point value xi at time level tnþ1 (i.e. f nþ1
i ) can be obtained by tracing the characteristic

back to time t ¼ tn and evaluating the interpolant ~f n
i�1

2
ðnÞ at location n ¼ n0. We observe that the update for f nþ1

i ¼ ~f n
i�1

2
ðn0Þ

can be written in a conservative form,
f nþ1
i ¼ f n

i � n0 f n
i�2; f

n
i�1; f

n
i ; f

n
iþ1

� �
� BL

3 � 1; n0; n
2
0

� �0� �
ð3:6Þ

¼ f n
i � n0 f n

i�2; f
n
i�1; f

n
i ; f

n
iþ1

� �
�

~0

CL
3

0@ 1A� CL
3

~0

0@ 1A0@ 1A � 1; n0; n
2
0

� �00@ 1A ð3:7Þ

¼ f n
i � n0 f n

i�1; f
n
i ; f

n
iþ1

� �
� CL

3 � f n
i�2; f

n
i�1; f

n
i

� �
� CL

3

� �
� 1; n0; n

2
0

� �0
;

where
BL
3 ¼

1
6 0 � 1

6

�1 � 1
2

1
2

1
2 1 � 1

2
1
3 � 1

2
1
6

0BBB@
1CCCA; CL

3 ¼
� 1

6 0 1
6

5
6

1
2 � 1

3
1
3 � 1

2
1
6

0B@
1CA: ð3:8Þ
3. Finally, we define the flux function,
f̂ n
i�1

2
ðnÞ ¼ f n

i�2; f
n
i�1; f

n
i

� �
� CL

3 � ð1; n; n
2Þ0; ð3:9Þ
so that Eq. (3.6) can be written as
f nþ1
i ¼ f n

i � n0 f̂ n
iþ1

2
ðn0Þ � f̂ n

i�1
2
ðn0Þ

� �
: ð3:10Þ
Proposition 3.1. The scheme in Eq. (3.10) conserves the total mass if periodic boundary conditions are imposed.
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Proof
 X
i

f nþ1
i ¼

X
i

f n
i � n0 f̂ n

iþ1
2
ðn0Þ � f̂ n

i�1
2
ðn0Þ

� �� �
¼
X

i

f n
i � n0

X
i

f̂ n
iþ1

2
ðn0Þ � f̂ n

i�1
2
ðn0Þ

� �
¼
X

i

f n
i : �
As to the case when xshift 2 ½� 1
2 ;0Þ, the scheme can be written in a conservative form in a fashion similar to the case of

xshift 2 0; 1
2

� �
. Specifically,
f nþ1
i ¼ f n

i þ n0 f̂ n
iþ1

2
ðn0Þ � f̂ n

i�1
2
ðn0Þ

� �
; ð3:11Þ
where the flux function
f̂ n
i�1

2
ðnÞ ¼ f n

i�1; f
n
i ; f

n
iþ1

� �
� CR

3 � ð1; n; n
2Þ0: ð3:12Þ
CR
3 is a 3� 3 matrix with CR

3ði; jÞ ¼ CL
3ð4� i; jÞ. Notice the change in sign in Eq. (3.11) from (3.10). In the case when jxshiftj > 1

2,
the left/right shifting exceeds half a single cell, and whole grid shifting is carried out, followed by a final update based on the
above procedure for xshift 2 � 1

2 ;
1
2

� �
.

We remark that Eq. (3.11) is also conservative if periodic boundary conditions are imposed. The conservative form allows
for the application of WENO reconstructions on flux functions, while preserving the conservation property.

Notice that the existence of a matrix CL
3 in Eq. (3.8) is essential in the design of the conservative version of the scheme.

Proposition 3.2 below assures such existence. Further, the proposition can be easily extended to the scheme with other high
order reconstructions.

Proposition 3.2. There exists a matrix CL
3 in Eq. (3.8), such that the matrix BL

3 in Eq. (3.6) can be split as
~0
CL

3

 !
�

CL
3

~0

 !
:

Proof. Let BL
3ði; :Þ ¼ ~bi and CL

3ði; :Þ ¼ ~ci. If there exists a matrix CL
3 s.t.
BL
3 ¼

~0
CL

3

 !
�

CL
3

~0

 !
; ð3:13Þ
then
~c1 ¼ �~b1;

~c2 ¼ �~b1 � ~b2;

~c3 ¼ �~b1 � ~b2 � ~b3 ¼ ~b4:

ð3:14Þ
From Eq. (3.14), existence of the matrix CL
3 can be guaranteed if
X4

i¼1

~bi ¼ ~0: ð3:15Þ
By choosing~f ¼ ðf n
i�2; f

n
i�1; f

n
i ; f

n
iþ1Þ ¼ ð1;1;1;1Þ, we see that there exists at least one such matrix CL

3 which splits BL
3 as proposed.

We note that the same splitting is true for matrix BR
3. h

Remark 3.3. The scheme described above is obtained through a high order reconstruction, and then shifting procedure. The
algorithm can be interpreted from another point of view, as a high order Taylor expansion in the time direction as follows.
From Eq. (3.1), we have
@f l

@lt
¼ ð�vÞl @f l

@xl
; l ¼ 1;2;3; . . . : ð3:16Þ
Taylor expanding of f ðx ¼ xi; tÞ about t ¼ tn gives,
f ðx ¼ xi; tÞ ¼ f n
i þ

X1
i¼1

1
i!
@if
@ti
ðt � tnÞi ¼ f n

i þ
X1
i¼1

ð�vÞi

i!
@if
@xi
ðt � tnÞi:
In particular, we may express f nþ1
i as,
f nþ1
i ¼ f n

i þ
X1
i¼1

ð�vÞi

i!
@if
@xi

Dti; ð3:17Þ
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where @i f
@xi is approximated by taking derivatives of Eq. (3.3). This formulation is equivalent to the semi-Lagrangian formula-

tion with a restricted time step.

Remark 3.4. For the linear hyperbolic equation (3.1), the standard finite difference update [22] is equivalent to Taylor
expanding f ðx ¼ xi; tnþ1Þ about t ¼ tn with a truncation error of OðDt2Þ,
f ðx ¼ xi; tnþ1Þ ¼ f n
i � Dt � v � @f

@x
þOðDt2Þ: ð3:18Þ
Again @f
@x is approximated by taking the derivative of the Lagrangian interpolant of f, where the interpolant is given by Eq.

(3.3).
3.1.2. General high order interpolation: fifth, seventh and ninth order
In this subsection, we provide the fifth, seventh and ninth order conservative semi-Lagrangian formulation, following a

similar approach to the third order one. The provided coefficients can be used to code up the algorithm directly. Its extension
to higher than ninth order interpolation is straight forward. As usual, let n0 ¼ jxshiftj. Our discussion focuses on the case of
xshift 2 � 1

2 ;
1
2

� �
, since the case of jxshiftj > 1

2 will be handled with a whole grid shift followed by the case of xshift 2 � 1
2 ;

1
2

� �
to

account for the fractional remainder.
As for the case of xshift 2 ½0; 1

2�, the high order conservative semi-Lagrangian method is,
f nþ1
i ¼ f n

i � n0 f̂ n
iþ1

2
ðn0Þ � f̂ n

i�1
2
ðn0Þ

� �
; ð3:19Þ
where the flux functions are respectively defined, for fifth, seventh and ninth order interpolation by,
f̂ n
i�1

2
ðnÞ ¼ f n

i�3; . . . ; f n
iþ1

� �
� CL

5 � ð1; . . . ; n4Þ0; ð3:20aÞ

f̂ n
i�1

2
ðnÞ ¼ f n

i�4; . . . ; f n
iþ2

� �
� CL

7 � ð1; n; . . . ; n6Þ0; ð3:20bÞ

f̂ n
i�1

2
ðnÞ ¼ f n

i�5; . . . ; f n
iþ3

� �
� CL

9 � ð1; n; . . . ; n8Þ0; ð3:20cÞ
with
CL
5 ¼

1
30 0 � 1

24 0 1
120

� 13
60 � 1

24
1
4

1
24 � 1

30
47
60

5
8 � 1

3 � 1
8

1
20

9
20 � 5

8
1

12
1
8 � 1

30

� 1
20

1
24

1
24 � 1

24
1

120

26666664

37777775; ð3:21Þ

CL
7 ¼

� 1
140 0 7

720 0 � 1
360 0 1

5040
5

84
1

180 � 19
240 � 1

144
1

48
1

720 � 1
840

� 101
420 � 5

72
7

24
11

144 � 13
240 � 1

144
1

336
319
420

49
72 � 23

72 � 7
36

23
360

1
72 � 1

252
107
210 � 49

72
1

48
7

36 � 1
30 � 1

72
1

336

� 19
210

5
72

7
80 � 11

144
1

240
1

144 � 1
840

1
105 � 1

180 � 1
90

1
144

1
720 � 1

720
1

5040

2666666666664

3777777777775
ð3:22Þ
and
CL
9 ¼

1
630 0 � 41

18144 0 13
17280 0 � 1

12096 0 1
362880

� 41
2520 � 1

1120
2081

90720
7

5760 � 1
135 � 1

2880
23

30240
1

40320 � 1
45360

199
2520

17
1440 � 281

2592 � 89
5760

139
4320

11
2880 � 17

6048 � 1
5760

1
12960

� 641
2520 � 127

1440
4097

12960
587

5760 � 29
432 � 41

2880
167

30240
1

1920 � 1
6480

1879
2520

205
288 � 797

2592 � 91
384

587
8640

5
192 � 19

3024 � 1
1152

1
5184

275
504 � 205

288 � 59
2592

91
384 � 29

1080 � 5
192

25
6048

1
1152 � 1

6480

� 61
504

127
1440

1637
12960 � 587

5760 � 17
4320

41
2880 � 43

30240 � 1
1920

1
12960

11
504 � 17

1440 � 491
18144

89
5760

11
2160 � 11

2880
1

6048
1

5760 � 1
45360

� 1
504

1
1120

59
22680 � 7

5760 � 11
17280

1
2880

1
60480 � 1

40320
1

362880

266666666666666664

377777777777777775
: ð3:23Þ
As to the case of xshift 2 ½� 1
2 ;0Þ, there is a similar formulation. The high order semi-Lagrangian scheme can be written in a

conservative form as
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f nþ1
i ¼ f n

i þ n0 f̂ n
iþ1

2
ðn0Þ � f̂ n

i�1
2
ðn0Þ

� �
; ð3:24Þ
where the flux functions are respectively defined, for fifth, seventh and ninth order interpolation by,
f̂ n
i�1

2
ðnÞ ¼ f n

i�2; . . . ; f n
iþ2

� �
� CR

5 � ð1; . . . ; n4Þ0; ð3:25aÞ

f̂ n
i�1

2
ðnÞ ¼ f n

i�3; . . . ; f n
iþ3

� �
� CR

7 � ð1; n; . . . ; n6Þ0; ð3:25bÞ

f̂ n
i�1

2
ðnÞ ¼ f n

i�4; . . . ; f n
iþ4

� �
� CR

9 � ð1; n; . . . ; n8Þ0: ð3:25cÞ
CR
p is a p� p matrix with its element given by
CR
pði; jÞ ¼ CL

pðpþ 1� i; jÞ; p ¼ 5;7;9: ð3:26Þ
Remark 3.5. By a similar argument to that given in Proposition 3.2, the existence of the matrix CL
p and CR

p , for p ¼ 5;7;9, is
guaranteed. Hence, the semi-Lagrangian scheme can be written in a conservative form for fifth, seventh and ninth order.
Likewise, this can be extended to the cases of p ¼ 11;13;15; . . .

Remark 3.6. The proposed conservative form of the semi-Lagrangian scheme for Eq. (3.1) evolves point values, instead of the
integrated mass. Because of this, the Strang splitting formulation allows for a high order extension in space (higher than sec-
ond order in space) for multi-dimensional problems.
3.2. WENO reconstruction in semi-Lagrangian framework

In general, high order fixed stencil reconstruction of numerical fluxes performs well when the solution is
smooth. However, around discontinuities oscillations will be introduced. In this subsection, a nonlinear WENO pro-
cedure is introduced for reconstructing f̂ n

i�1
2
ðnÞ. By adaptively assigning weights to neighboring candidate stencils, the

WENO nonlinear reconstruction preserves high order accuracy of the linear scheme around smooth regions of the
solution, while producing a sharp and essentially non-oscillatory capture of discontinuities. The WENO reconstruc-
tion could also be understood as a black box filtering procedure, based on the fluxes generated from fixed stencil
interpolation.

The original third and fifth order WENO reconstructions, in the finite difference and finite volume framework, were intro-
duced in [22]. The reconstruction procedures are further extended to seventh, ninth and eleventh order in [2]. In this sub-
section, we give the procedure for embedding the original WENO reconstruction into the proposed conservative semi-
Lagrangian framework, along with a third order WENO reconstruction as an example. For other order of reconstructions
(fifth, seventh and ninth), which are used in our numerical simulations, we only provide the formulations and suggest that
the interested reader look at Refs. [22,2] for the details.

3.2.1. Third order WENO reconstruction
In the following, we illustrate the WENO mechanism through a third order example, following Section 3.1.1. As men-

tioned in Remark 3.4, the standard finite difference scheme is very closely related to our proposed semi-Lagrangian scheme,
when solving a linear hyperbolic equation. Based on this observation, we apply WENO reconstructions to numerical fluxes,
e.g. f̂ n

i�1
2
ðnÞ in (3.9), in the third order conservative semi-Lagrangian scheme.

We only discuss the construction of the flux function f̂ n
i�1

2
when xshift 2 0; 1

2

� �
. When xshift 2 ½� 1

2 ;0�, the numerical flux

could be modified symmetrically with respect to xi in the WENO fashion. From Eq. (3.9), the point values ff n
i�2; f

n
i�1; f

n
i g are

used to construct the flux function f̂ n
i�1

2
ðnÞ. The flux f̂ n

i�1
2
ðnÞ is composed of the information from two potential stencils
S1 ¼ ff n
i�2; f

n
i�1g and S2 ¼ ff n

i�1; f
n
i g: ð3:27Þ
Intuitively, in regions where the function is smooth, we want to use information from both stencils S1 and S2, to obtain
a third order approximation. On the other hand, around a big jump, we only want to use one of the stencils. For exam-
ple, consider the jump ðf n

i�2; f
n
i�1; f

n
i Þ ¼ ð0;0;1Þ, we only want to use the stencil S1 to construct the flux function f̂ n

i�1
2
ðnÞ,

since excluding the stencil S2 will prevent numerical oscillations. In this work, we will choose to only use the WENO
mechanism in adaptively reconstructing the coefficients in front of the constant 1 in the equation for f̂ n

i�1
2
, that is Eq.

(3.9) (or the first column of matrix CL
3 in Eq. (3.8)), while leaving coefficients for n; n2 unchanged (or the second and

the third columns of matrix CL
3). It is difficult to apply the WENO reconstruction to the coefficients for n (or n2), because

the linear weights from different sub-stencils are not always positive. We note that there are techniques for treating
non-positive weights in the WENO reconstruction [26], adaptation to the method presented in this work is beyond
the scope of this text. Also recall that we have n 2 � 1

2 ;
1
2

� �
in our scheme, therefore applying WENO reconstruction

on the coefficient for constant 1 plays a more important role in suppressing oscillations, as observed in our numerical
experiments in Section 4.

The general WENO procedure for constructing f̂ n
i�1

2
is as follows,
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1. Compute the linear weights, c1 and c2, such that
f n
i�2; f

n
i�1; f

n
i

� �
� CL

3ð:;1Þ ¼ c1 f n
i�2; f

n
i�1

� �
� �1

2
;
3
2

� �0
þ c2 f n

i�1; f
n
i

� �
� 1

2
;
1
2

� �0
; ð3:28Þ
where ðf n
i�2; f

n
i�1Þ � � 1

2 ;
3
2

� �0 and f n
i�1; f

n
i

� �
� 1

2 ;
1
2

� �0 are second order reconstructions of fluxes from two stencils S1 and S2

respectively. From Eq. (3.9), c1 ¼ 1
3 and c2 ¼ 2

3.
2. Compute the smoothness indicator br for each stencil Sr ; r ¼ 1;2. The smoothness indicators br are designed such that, if

the function is smooth over the stencil Sr , then br ¼ OðDx2Þ, but if the function has a discontinuity, then br ¼ Oð1Þ. For the
third order fluxes, the smoothness indicators are,
b1 ¼ f n
i�1 � f n

i�2

� �2
; b2 ¼ f n

i � f n
i�1

� �2
: ð3:29Þ
3. Compute the nonlinear weights w1 and w2. Let
~w1 ¼ c1=ð�þ b1Þ
2
; ~w2 ¼ c2=ð�þ b2Þ

2
; ð3:30Þ
where � is a small number to prevent the denominator from becoming zero. In our numerical tests we take � to be 10�6.
The resulting nonlinear weights are renormalized as,
w1 ¼ ~w1=ð ~w1 þ ~w2Þ; w2 ¼ ~w2=ð ~w1 þ ~w2Þ: ð3:31Þ
4. Compute numerical fluxes constructed in WENO fashion. Define the matrix eCL
3 as,
eCL
3ð:;1Þ ¼ w1 � �

1
2
;
3
2
;0

� �0
þw2 � 0;

1
2
;
1
2

� �0
; eCL

3ð:;2Þ ¼ CL
3ð:;2Þ; eC L

3ð:;3Þ ¼ CL
3ð:;3Þ: ð3:32Þ
The updated numerical flux is computed using eCL
3, i.e.
f̂ n
i�1

2
ðn0Þ ¼ f n

i�2; f
n
i�1; f

n
i

� �
� eCL

3 � 1; n0; n
2
0

� �0
: ð3:33Þ
Repeating the above procedure to obtain the equivalent WENO reconstruction of f̂ n
iþ1

2
ðn0Þ, the fluxes in the conservative

semi-Lagrangian scheme in Eq. (3.10) are reconstructed using Eq. (3.33) as well as the equivalent WENO reconstruction
of f̂ n

iþ1
2
ðn0Þ.
3.2.2. General WENO reconstruction procedure
In the following, we provide a general WENO reconstruction procedure for the semi-Lagrangian framework. We again fo-

cus our discussion on reconstructing the numerical flux f̂ n
i�1

2
for the case of xshift 2 0; 1

2

� �
, since the procedure for f̂ n

iþ1
2

is similar.
To reconstruct a numerical flux in WENO fashion, the basic idea is to use an adaptive convex combination of linear fluxes
from candidate stencils
Sr ¼ ff n
i�kþr�2; . . . ; f n

iþr�2g; r ¼ 1; . . . ; kþ 1; ð3:34Þ
for a ð2kþ 1Þth order scheme. The WENO procedure for f̂ n
i�1

2
, and likewise f̂ n

iþ1
2
, which yields a ð2kþ 1Þth order conservative

semi-Lagrangian method for solving Eq. (3.1), may be summarized as,

1. Pre-compute constant coefficients, including
(a) the matrices CL

2kþ1 and CR
2kþ1, which are given in Section 3.1 for k ¼ 1;2;3;4,

(b) constant coefficients crj; j ¼ 1; . . . ; kþ 1, in order to reconstruct the flux from each stencil Sr as,
Xkþ1

j¼1

crjf n
i�kþrþj�3: ð3:35Þ
Details of reconstruction can be found in Ref. [13]. The constants crj; r ¼ 1; . . . ; kþ 1; j ¼ 1; . . . ; kþ 1, for k ¼ 1;2;3;4; are
given in Table 3.1 for implementation convenience.

(c) construct the linear weights cr ; r ¼ 1; . . . ; kþ 1, s.t.,
f n
i�k�1; . . . ; f n

iþk�1

� �
� CL

2kþ1ð:;1Þ ¼
Xkþ1

r¼1

cr f n
i�kþr�2; . . . ; f n

iþr�2

� �
� ðcr1; . . . ; cr;kþ1Þ0: ð3:36Þ
For implementation convenience, cr are listed in Table 3.2 for k ¼ 1;2;3;4.

2. Compute xshift ¼ v Dt
Dx. Here we assume that xshift 2 0; 1

2

� �
.

3. Compute the smoothness indicator br ,
br ¼
Xk

l¼1

Z x
iþ1

2

x
i�1

2

Dx2l�1 @lprðxÞ
@xl

 !2

dx;



Table 3.1
The constants crj for k ¼ 1; 2;3;4.

k r j = 1 j = 2 j = 3 j = 4 j = 5

1 1 �1/2 3/2
2 1/2 1/2

2 1 1/3 �7/6 11/6
2 �1/6 5/6 1/3
3 1/3 5/6 �1/6

3 1 �1/4 13/12 �23/12 25/12
2 1/12 �5/12 13/12 1/4
3 �1/12 7/12 7/12 �1/12
4 1/4 13/12 �5/12 1/12

4 1 1/5 �21/20 137/60 �163/60 137/60
2 �1/20 17/60 �43/60 77/60 1/5
3 1/30 �13/60 47/60 9/20 �1/20
4 �1/20 9/20 47/60 �13/60 1/30
5 1/5 77/60 �43/60 17/60 �1/20

Table 3.2
The linear weights cr for k ¼ 1; 2;3;4.

k r = 1 r = 2 r = 3 r = 4 r = 5

1 1/3 2/3
2 1/10 3/5 3/10
3 1/35 12/35 18/35 4/35
4 1/126 10/63 10/21 20/63 5/126
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where prðxÞ is the reconstruction polynomial from the stencil Sr . The derivation, as well as the explicit expression, for the
fifth order indicator can be found in Ref. [22], and the derivation and expression for the seventh and ninth order cases can
be found in Ref. [2]. We have listed explicit forms of the br in Appendix A for implementation convenience.

4. Compute the nonlinear normalized weights wr ,
Table 4
Order o

Mes

32

64

96

128

160

192
wr ¼
~wrP
r

~wr
; r ¼ 1; . . . ; kþ 1;
where ~wr ¼ cr

ð�þbr Þ2
.

5. Construct a nonlinear matrix eCL
2kþ1 as,
eCL
2kþ1ð:;1Þ ¼ w1 � ðc11; c12; . . . ; c1;kþ1; 0; . . . ; 0Þ þ � � � þwkþ1 � ð0; . . . ; 0; ckþ1;1; ckþ1;2; . . . ; ckþ1;kþ1Þ;eCL
2kþ1ð:;2Þ ¼ CL

2kþ1ð:;2Þ

..

.

eCL
2kþ1ð:;2kþ 1Þ ¼ CL

2kþ1ð:;2kþ 1Þ:
6. Compute the numerical fluxes as
f̂ n
i�1

2
ðn0Þ ¼ f n

i�k�1; . . . ; f n
iþk�1

� �
� eC L

2kþ1 � ð1; n0; . . . ; n2k
0 Þ
0
: ð3:37Þ
Finally, the resulting WENO fluxes, f̂ n
i�1

2
ðn0Þ and f̂ n

iþ1
2
ðn0Þ, are used in the update of the conservative semi-Lagrangian scheme in

Eq. (3.10).
.1
f accuracy for (4.1) with uðx; t ¼ 0Þ ¼ sinðxÞ at T ¼ 20. CFL ¼ 1:2.

h Third order Fifth order Seventh order Ninth order

Error Order Error Order Error Order Error Order

3:27� 10�2 – 7:31� 10�5 – 2:64� 10�6 – 7:74� 10�9 –

8:55� 10�3 1.94 2:23� 10�6 5.03 3:84� 10�8 6.11 1:32� 10�11 9.20

3:66� 10�3 2.09 2:93� 10�7 5.00 3:27� 10�9 6.07 3:43� 10�13 9.00

1:93� 10�3 2.23 6:97� 10�8 5.00 5:91� 10�10 5.95 4:35� 10�14 7.18

1:11� 10�3 2.48 2:28� 10�8 5.00 1:55� 10�10 5.99 4:29� 10�14 –

6:81� 10�4 2.67 9:16� 10�9 5.00 5:15� 10�11 6.06 9:74� 10�14 –



J.-M. Qiu, A. Christlieb / Journal of Computational Physics 229 (2010) 1130–1149 1139
4. Numerical tests

In this section, we first test the spatial accuracy of the proposed schemes for the simple test cases of linear advection and
rigid body rotation, Section 4.1. In Section 4.2, we demonstrate the utility of the new method by applying it to classical prob-
lems from plasma physics, such as Landau damping and two-stream instability.
Fig. 4.1. Plots of the numerical solution (circles) versus the exact solution (solid line) of Eq. (4.1) with 320 grid points, CFL ¼ 0:6 at T ¼ 20. The initial
condition is uðx; t ¼ 0Þ ¼ 1, for x 2 ½p=2;3p=2�, and uðx; t ¼ 0Þ ¼ 0, otherwise.

Table 4.2
Order of accuracy for (4.2) with uðx; y; t ¼ 0Þ ¼ sinðxþ yÞ at T ¼ 20. CFL ¼ 1:2.

Mesh Third order Fifth order Seventh order Ninth order

Error Order Error Order Error Order Error Order

18 0.38 – 9:08� 10�3 – 6:69� 10�4 – 1:23� 10�5 –

36 0.11 1.79 3:09� 10�4 4.88 8:84� 10�6 6.24 1:96� 10�8 9.29

54 7:48� 10�2 0.96 4:06� 10�5 5.00 7:75� 10�7 6.00 4:68� 10�10 9.21

72 4:09� 10�2 2.10 9:61� 10�6 5.01 1:37� 10�7 6.02 3:40� 10�11 9.12

90 2:57� 10�2 2.08 3:15� 10�6 5.00 3:57� 10�8 6.04 4:82� 10�12 8.75

Fig. 4.2. Plots of the numerical solution of Eq. (4.2) with CFL ¼ 0:6 at T ¼ 0:5. The initial condition is uðx; y; t ¼ 0Þ ¼ 1, for x; y 2 ½p=2;3p=2�, and
uðx; y; t ¼ 0Þ ¼ 0, otherwise. The numerical mesh has a resolution of 90� 90.



1140 J.-M. Qiu, A. Christlieb / Journal of Computational Physics 229 (2010) 1130–1149
4.1. Test examples

Example 4.1 (one-dimensional linear translation).
Table 4
Order o

Mes

18

36

54

72

90

Fig. 4.3
½�1;1�,
ut þ ux ¼ 0; x 2 ½0;2p�: ð4:1Þ
The conservative semi-Lagrangian methods with third, fifth, seventh and ninth order WENO reconstruction are used to
solve Eq. (4.1). Table 4.1 gives the L1 error, and the corresponding order of convergence, of the WENO reconstruction when
applied to Eq. (4.1) with smooth initial data uðx;0Þ ¼ sinðxÞ. Eq. (4.1) has the smooth solution uðx; tÞ ¼ sinðx� tÞ, and we
therefore expect WENO reconstruction to give high order convergence, which is observed. We note that the schemes with
fifth and ninth order WENO reconstruction have a numerical rate of convergence close to the theoretical value. This is in
contrast with third and seventh order WENO reconstruction, which does not behave as well. Fig. 4.1 are plots of numerical
solutions of a moving rectangular wave. Non-oscillatory numerical capture of discontinuities is observed. Moreover, the data
show that as the order of reconstruction increases, the numerical dissipation decreases.
.3
f accuracy for Eq. (4.3) with uðx; y; t ¼ 0Þ ¼ expðx2 þ y2Þ at T ¼ 2p; CFL ¼ 1:2.

h Third order Fifth order Seventh order Ninth order

Error Order Error Order Error Order Error Order

1:20� 10�2 – 7:33� 10�3 – 3:68� 10�3 – 3:61� 10�3 –

4:58� 10�3 1.40 7:62� 10�4 3.27 2:26� 10�4 4.03 8:68� 10�5 5.38

1:86� 10�3 2.23 1:57� 10�4 3.89 1:87� 10�5 6.14 2:48� 10�6 8.77

9:25� 10�4 2.42 4:55� 10�5 4.31 2:45� 10�6 7.07 1:77� 10�7 9.18

5:31� 10�4 2.49 1:65� 10�5 4.55 5:01� 10�7 7.11 2:84� 10�8 8.19

. Plots of the numerical solution of Eq. (4.3) with CFL ¼ 1:2 at T ¼ 2p. The initial condition is uðx; y; t ¼ 0Þ ¼ 1, for ðx; yÞ 2 ½�1;1� � ½�4;4� [ ½�4;4��
and uðx; t ¼ 0Þ ¼ 0, otherwise. The numerical mesh is 90� 90.
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Example 4.2 (two-dimensional linear transport).
ut þ ux þ uy ¼ 0; x 2 ½0;2p�; y 2 ½0;2p�: ð4:2Þ
The Strang splitting conservative semi-Lagrangian method, with third, fifth, seventh and ninth order WENO recon-
struction, are applied to the simulation of Eq. (4.2). For any 2D linear transport equation, the semi-Lagrangian method
is essentially a shifting procedure. Since the x-shifting and y-shifting operators commute, there is no dimensional split-
ting error in time and the spatial error is the dominant error. Table 4.2 gives the L1 error and convergence rate of the
scheme when applied to Eq. (4.2) with smooth initial data, uðx; y; tÞ ¼ sinðxþ y� 2tÞjt¼0. As expected, high order conver-
gence is observed. Similar to the one-dimensional case, schemes with fifth and ninth order WENO reconstructions obtain
the expected convergence rates, while in the third and seventh order schemes, a rate lower than the expected rate is
observed. Fig. 4.2, the numerical solution of a moving 2D rectangular wave is plotted. As anticipated when using WENO
reconstruction, non-oscillatory numerical capture of the discontinuities is observed. Moreover, as the order of the recon-
struction increases, the edges of the discontinuities get sharper, i.e. the numerical dissipation decreases with the increase
in order.

Example 4.3 (rigid body rotation).
ut � yux þ xuy ¼ 0; x 2 ½�2p;2p�; y 2 ½�2p;2p�: ð4:3Þ
The Strang splitting conservative semi-Lagrangian methods with third, fifth, seventh and ninth order WENO recon-
struction are next applied to Eq. (4.3). Table 4.3 gives the L1 error and convergence rates of the scheme when applied
to smooth initial data uðx; y; 0Þ ¼ expðx2 þ y2Þ. We observe that the spatial error still dominates the splitting error in
time, which is somewhat unexpected. Further, high order convergence is observed. Fig. 4.3 is a plot of the numerical
solution for a rotating cross with sharp edges. Non-oscillatory numerical capture of discontinuities is observed. As in
the 2D transport example, the edges of discontinuities of the rotating cross example become sharper as the order of
the reconstruction increases.
Fig. 4.4. Time evolution of the L2 norm of the electric field using third, fifth, seventh and ninth order reconstruction.
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4.2. The Vlasov–Poisson system

In this subsection, we apply the proposed Strang splitting semi-Lagrangian WENO method to the Vlasov equation in the
VP system. Periodic boundary conditions are imposed in the x-direction and zero boundary conditions are imposed in the v-
direction for all of our test problems. Because of the periodicity in space, a fast Fourier transform (FFT) is used to solve the 1D
Poisson equation. qðx; tÞ is computed by rectangular rule, qðx; tÞ ¼

R
f ðx;v ; tÞdv ¼

P
jf ðx;v j; tÞDv , which is spectrally accurate

[5], when the underlying function is smooth enough. Next, we recall some classical results on the VP system.

1. Preservation of the Lp norm, for 1 6 p <1.
d
dt

Z
v

Z
x

f ðx;v ; tÞpdxdv ¼ 0:
2. Preservation of the entropy
d
dt

Z
v

Z
x

f ðx;v ; tÞlnðf ðx; v; tÞÞdxdv ¼ 0:
3. Preservation of the energy
d
dt

Z
v

Z
x

f ðx;v ; tÞv2dxdv þ
Z

x
E2ðx; tÞdx

� �
¼ 0:
In our numerical experiments below, we checked the time evolution of these theoretically preserved quantities in the dis-
crete sense. The norms/entropy/energy are numerically approximated by rectangular rule, which is again spectrally accurate,
if the integrated function is smooth enough.
Example 4.4 (Weak Landau damping). Consider the example of weak Landau damping for the VP system. The initial
condition used here is,
Fig. 4.5. Time evolution of L1 (upper left) and L2 (upper right) norms as well as the energy (lower left) and entropy (lower right).
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f ðx;v ; t ¼ 0Þ ¼ 1ffiffiffiffiffiffiffi
2p
p ð1þ a cosðkxÞÞ exp �v2

2

� �
; ð4:4Þ
with a ¼ 0:01 and k ¼ 0:5. The time evolution of the L2 norm of the electric field is plotted in Fig. 4.4. The correct damping of
the electric field is observed in the plots, benchmarked with the theoretical value c ¼ 0:1533 [15] (the solid line in Fig. 4.4).
We observe that the fifth, seventh and ninth order WENO is better than the third order scheme in recovering the damping
rate. The ninth order WENO does not outperform fifth/seventh order WENO, because the numerical mesh no longer supports
the waves of filamentation, even though the order of approximation is very high. We remark that the electric field is an
important theoretical metric. However, since the electric field is an integrated quantity, it is not a sensitive enough metric
to demonstrate the advantage of a method that is high order in phase space. The advantages of our high order methods are
better illustrated in preserving the L1; L2 norms, energy, entropy and in the example of two-stream instability later in this
paper. The evolution of the L1 and L2 norm as well as the discrete energy and entropy of the solution are plotted in Fig. 4.5,
which shows the advantage of using high order reconstruction in preserving the relevant physical norms.

Example 4.5 (Strong Landau damping). The next example we consider is the case of strong Landau damping. We simulate
the VP system with the initial condition in Eq. (4.4) with a ¼ 0:5 and k ¼ 0:5. Our numerical simulation parameters for all
schemes are vmax ¼ 5, Nx ¼ 64, Nv ¼ 128 and Dt ¼ Dx; where vmax is the maximum velocity on the phase space mesh, Nx

is the number of grid points along the x axis, Nv is the number of grid points along the v axis, and Dt is the time step used.
In the first two rows of Fig. 4.6, numerical solutions from the proposed Strang splitting conservative semi-Lagrangian scheme
with various WENO reconstruction operators are plotted at a final time of T ¼ 30. In the last row of Fig. 4.6, numerical solu-
. The first two rows are phase space plots of strong Landau damping at T ¼ 30 using third, fifth, seventh and ninth order reconstruction. The
cal mesh is 64� 128. The last row are phase space plots using third order reconstruction, with the numerical mesh being 128� 256 (left) and
12 (right).
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tions from the third order scheme with two times finer and four times finer numerical mesh are plotted. They serve as ref-
erence solution, when compared with difference high order schemes on coarse meshes. While decent numerical resolution is
obtained with all of the reconstructions, the scheme with a high order WENO reconstruction operator (ninth order) performs
better than that with a low order reconstruction operator (third order). The high order reconstruction resolves fine solution
structures and filamentation that is not resolved with the low order reconstruction when computed on the same mesh. This
is consistent with the fact that, compared with low order schemes, high order schemes converge to the solution faster in
smooth solution regions and are less dissipative around discontinuities. Fig. 4.7 shows the time development of the L2 norm
of the electric field from various WENO reconstructions, which is in consistent with the result reported in [15]. As noted in
the weak Landau damping example, the electric field is an integrated quantity, and not particularly sensitive to the advan-
tages of high order methods, which are better demonstrated below in the two-stream instability example. The discrete L1

norm, L2 norm, energy and entropy for the proposed method with various WENO reconstructions are plotted in Fig. 4.8. It
is observed that schemes with higher order WENO reconstruction do a better job of preserving the L2 norm, entropy and
energy than those with lower order reconstruction. The scheme with ninth order does not particularly preserve the L1 well,
which is due to the appearance of some negative values in the numerical solution. The appearance of negative values is
because of some small oscillations, especially of higher order schemes. Fig.4.9 gives the solution profile of strong Landau
damping at different times using ninth order WENO reconstruction. It is clear that high order WENO reconstruction helps
preserve solution structure, even when the details of the solution begin to become under resolved on a given mesh.

Example 4.6 (Two-stream instability [15]). Consider the symmetric warm two-stream instability, i.e. the electron distribu-
tion function in the VP system is started with the unstable initial condition [15],
f ðx;v ; t ¼ 0Þ ¼ 2
7
ffiffiffiffiffiffiffi
2p
p ð1þ 5v2Þð1þ aððcosð2kxÞ þ cosð3kxÞÞ=1:2þ cosðkxÞÞ exp �v2

2

� �
; ð4:5Þ
with a ¼ 0:01; k ¼ 0:5, the length of the domain in the x-direction is L ¼ 2p
k and the background ion distribution function is

fixed, uniform and chosen so that the total net charge density for the system is zero. Our numerical simulation parameters
Fig. 4.7. Time evolution of the L2 norm of the electric field using third, fifth, seventh and ninth order reconstruction.
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are vmax ¼ 5; Nx ¼ 64; Nv ¼ 128; Dt ¼ Dx for all schemes. Fig. 4.10 shows numerical solutions of phase space profiles at
T ¼ 53 from the proposed Strang splitting conservative semi-Lagrangian scheme with various WENO reconstruction opera-
tors. While decent numerical resolution is obtained with all of the reconstructions, the scheme with ninth order WENO
reconstruction performs better than that with a low order reconstruction operator (third order). As in our previous examples,
fine solution structure and filamentation are better resolved with the high order reconstruction. This is again consistent with
the fact that high order schemes are not only more accurate but also less dissipative. Fig. 4.11 shows the solution profile of
the scheme with third order WENO reconstruction with the resolution of the numerical mesh set to Nx ¼ 128; Nv ¼ 256
(left) and Nx ¼ 256; Nv ¼ 512 (right). In order to make a fair comparison in terms of work, the Dt is kept the same as in
Fig. 4.10, which is allowed since this is a semi-Lagrangian scheme. It is observed that the resolution of the left plot of
Fig. 4.11 is comparable to that of the fifth order scheme from Fig. 4.10, with the computational effort of the third order meth-
od in Fig. 4.11 being twice as expensive as the fifth order method in Fig. 4.10. The resolution of the right plot of Fig. 4.11 is
comparable to that of the ninth order scheme from Fig. 4.10, with the computational effort of the third order method in
Fig. 4.11 being four times as expensive as the ninth order method in Fig. 4.10. Fig. 4.12 shows the time development of
the discrete L2 norm and entropy for the proposed methods with various WENO reconstructions. As expected, the high order
schemes are better at preserving the L2norm and entropy of the system.
5. Conclusions

In this paper, we propose a novel Strang splitting semi-Lagrangian approach for solving the Vlasov equation, which makes
it possible to use the WENO methodology in space. The method can be designed to be arbitrarily high order in space in a
multi-dimensional setting.

Since the method is a semi-Lagrangian scheme, it does not have a time step restriction, allowing for a larger numerical
time step than an explicit scheme, making the method computationally cheaper, and more flexible, than Eulerian formula-
tions of the Vlasov–Poisson system which use explicit time stepping. The method has been tested extensively and for multi-
dimensional problems, including transport and rotational problems, our numerical results demonstrate the advantages of
high order accuracy combined with the essentially non-oscillatory resolution of sharp interfaces. We also applied the meth-
Fig. 4.8. Time evolution of the L1 (upper left) and L2 (upper right) norm, discrete energy (lower left) and entropy (lower right).



Fig. 4.9. Phase space plots of the time evolution of phase space for the test case of strong Landau damping computed with ninth order WENO reconstruction
in the Strang splitting conservative semi-Lagrangian method. The time series is for T 2 f5;10;15;20;40;80;120;160;200g.
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od to the classical Landau damping and the two-stream instability in plasma physics. Methods with higher order reconstruc-
tion have demonstrated their superior abilities in resolving the physical phenomena as opposed to the results generated by
low order methods. However, the order of convergence in time has been restricted to at best second order, due to the Strang
splitting. A key observation is that, while the method is only second order in time, high order spatial resolution appears to
play a more critical role in the quality of the solution, for this class of problems, than does temporal accuracy.
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Appendix A. The fifth, seventh and ninth smoothness indicators

For the fifth, seventh and ninth order WENO method, the smoothness indicators, br , are, respectively,

fifth order:
b1 ¼
13
12

f n
i�3 � 2f n

i�2 þ f n
i�1

� �2 þ 1
4

f n
i�3 � 4f n

i�2 þ 3f n
i�1

� �2
;

b2 ¼
13
12

f n
i�2 � 2f n

i�1 þ f n
i

� �2 þ 1
4

f n
i�2 � f n

i

� �2
;

b3 ¼
13
12

f n
i�1 � 2f n

i þ f n
iþ1

� �2 þ 1
4

3f n
i�1 � 4f n

i þ f n
iþ1

� �2
:



Fig. 4.10. Phase space plots of the two-stream instability T ¼ 53 using third, fifth, seventh and ninth order reconstruction. The numerical mesh is 64� 128.

Fig. 4.11. Phase space plots for the two-stream instability T ¼ 53 using a third order semi-Lagrangian WENO method. The numerical mesh is 128� 256
(left) and 256� 512 (right). The computational cost is 4 and 16 times greater than for the first plot in Fig. 4.10.

Fig. 4.12. Time development of the numerical L2 norm (left) and entropy (right) of the two-stream instability.

J.-M. Qiu, A. Christlieb / Journal of Computational Physics 229 (2010) 1130–1149 1147



seventh order:
1148 J.-M. Qiu, A. Christlieb / Journal of Computational Physics 229 (2010) 1130–1149
b1 ¼ f n
i�4 547f n
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i�3 þ 4642f n

i�2 � 1854f n
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ninth order:
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